The Mechanisms of Alkane Eliminations from the Intermediates produced by Reactions of the Hydroxide and Methoxide Negative Ions with Tetramethylsilane in the Gas Phase

John C. Sheldon, Roger N. Hayes, and John H. Bowie*
Departments of Chemistry, University of Adelaide, South Australia, 5001
Charles H. DePuy
Department of Chemistry, University of Colorado, Boulder, Colorado, 80309, U.S.A.

$a b$ initio Calculations ($6-21 \mathrm{G}$ level, GAUSSIAN 82) and both ion cyclotron resonance (i.c.r.) and flowing afterglow (F.A.) experiments have been used to study the reactions of HO^{-}and MeO^{-}with $\mathrm{Me}_{4} \mathrm{Si}$ (and related systems). ab initio Calculations suggest that interconversion of apical and equatorial methyl groups in trigonal bipyramidal $\left[\mathrm{Me}_{2} \mathrm{H}_{3} \mathrm{Si}^{-}\right.$] (formation energy -200 kJ mol ${ }^{-1}$) occurs through a square pyramidal transition state (barrier $12 \mathrm{~kJ} \mathrm{~mol}^{-1}$). Deuterium labelling (F.A.) studies show that for the fast reaction (1) the elimination of CH_{4} is statistical: no deuterium isotope effect is observed.

$$
\begin{equation*}
\mathrm{HO}^{-}+\mathrm{Me}_{4} \mathrm{Si} \longrightarrow \mathrm{Me}_{3} \mathrm{SiO}^{-}+\mathrm{CH}_{4} \tag{1}
\end{equation*}
$$

The MeO^{-}ion reacts with $\mathrm{Me}_{4} \mathrm{Si}$ in i.c.r. experiments by two slow processes:

$$
\begin{gather*}
\mathrm{MeO}^{-}+\mathrm{Me}_{4} \mathrm{Si} \longrightarrow \mathrm{Me}_{3} \mathrm{SiO}^{-}+\mathrm{C}_{2} \mathrm{H}_{6} \tag{2}\\
\mathrm{MeO}^{-}+\mathrm{Me}_{4} \mathrm{Si} \longrightarrow \mathrm{Me}_{2}(\mathrm{MeO}) \mathrm{SiCH}_{2}^{-}+\mathrm{CH}_{4} \tag{3}
\end{gather*}
$$

The latter process (3) is not observed in F.A. experiments and is likely to be formed from excited MeO^{-}species. ab initio Calculations for the model system $\mathrm{MeO}^{-}-\mathrm{MeSiH}_{3}$ suggest that reactions (1)-(3) are stepwise: the key step is cleavage of the $\mathrm{Si}-\mathrm{C}$ bond in the reactive intermediate to produce a reacting solvated methyl anion. There are high internal barriers for reactions (2) and (3), and both secondary and primary (where appropriate) deuterium isotope effects are noted for these two reactions in i.c.r. experiments.

Flowing afterglow, ${ }^{1,2}$ and ion cyclotron resonance ${ }^{3}$ studies of the reactions between nucleophiles (e.g. $\mathrm{F}^{-}, \mathrm{HO}^{-}$, and MeO^{-}) and tetra-alkylsilanes indicate that reactive intermediates $\mathrm{R}_{4} \mathrm{Si}^{-} \mathrm{Nu}$ (thought to be of trigonal bipyramidal geometry) undergo 1,2 -elimination \dagger of neutral molecules. For example, the reaction of $\mathrm{CD}_{3} \mathrm{O}^{-}$with tetramethylsilane leads to competitive elimination of CH_{4} and MeCD_{3} [see the schematic representations (1) and (2)]. ${ }^{3}$ DePuy, Bierbaum, and Damrauer have reported ${ }^{2}$ that a study of the competitive eliminations of RH and CH_{4} from $\mathrm{HO}^{-}-\mathrm{Me}_{3} \mathrm{SiR}$ systems [see (3) for the elimination of RH] can be used to determine a gas-phase acidity scale for alkanes. ${ }^{2}$ It is unlikely that such a correlation could be obtained unless the apical and equatorial substituents equilibrate prior to decomposition of the five-co-ordinate intermediate. Apical-equatorial interchange has been noted in the condensed phase ${ }^{4}$ and it is has been suggested, ${ }^{5}$ by analogy with the chemistry of pentavalent phosphorus, that this may be achieved either by pseudo-rotation ${ }^{6}$ or turnstile rotation. ${ }^{7}$ Analogous 1,2-elimination reactions in the gas phase have been observed for excited alkoxide ions ${ }^{8,9}$ and from tetrahedral intermediates formed from alkoxide ions and trialkylboranes. ${ }^{10}$ In these cases it has been proposed that the elimination reactions occur by stepwise mechanisms.

In this paper we explore both theoretically (using ab initio calculations) and experimentally (using both ion cyclotron

[^0]

(1)

(2)

(3)
resonance and flowing afterglow techniques) the course(s) of the reactions shown in (1), (2), and (3). We are interested in these reactions since they raise fundamental issues, viz. (i) is there equatorial-apical equilibration in a five-co-ordinate silicon intermediate, and (ii) is the elimination of the alkane a stepwise or concerted process?

Results and Discussion

Ion cyclotron resonance (i.c.r.) experiments were carried out using a Dynaspec ICR 9 spectrometer. Flowing afterglow experiments were performed at 300 K in a flowing afterglow (F.A.) system which has been described previously. ${ }^{11}$ Summaries of both techniques are included in the Experimental section.
$a b$ initio Calculations were carried out at the 6-21G level using GAUSSIAN $82 .{ }^{12}$ We recognise that accurate representation of negatively charged species requires extended bases ${ }^{13}$ preferably with a low exponent Gaussian in each set to

Figure 1. ab initio Calculations ($6-21 \mathrm{G}$) for the apical equatorial conversion of substituents in $\mathrm{Me}_{2} \mathrm{SiH}_{3}{ }^{-}$. Points shown are fully optimized in the direction of the reaction co-ordinate. Energies (a.u.) as follows: A, $\mathbf{- 3 6 9 . 1 8 5 2 4 , ~ B},-369.66217$, and $\mathrm{C},-369.65764$.
represent the diffuse outer region of negative ions. Nevertheless, we believe that systematic exploration (at a practical level) of the relative energies of intermediates and products is indispensible if complex reaction sequences are to be investigated. To support this view, we have shown that 4-31G and $6-311^{++} G$ calculations provide the same mechanistic information for the stepwise loss of molecular hydrogen from the ethoxide negative ion. ${ }^{9}$ The procedures for exploring molecular system changes and for identifying overall reaction mechanisms have been described previously. ${ }^{14,}$,
(A) The Interchange of Apical and Equatorial Substituents.-ab initio Calculations indicate that for attack of MeO^{-}on either silane or methylsilanes, the stable trigonal bipyramidal species in which a methoxy substituent occupies an apical position is only some $10 \mathrm{~kJ} \mathrm{~mol}^{-1}$ more negative in energy than that in which the MeO is in an equatorial position. ${ }^{3,15}$ However, these five-co-ordinate structures are formed in the gas phase with energies of formation in the range ${ }^{3.15}-200$ to $-300 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Provided this energy is not collisionally or radiatively dissipated, interchange of apical and equatorial substituents should occur. In Figure 1 we show the results of calculations on

[^1]an exchange of apical and equatorial methyl groups in the model system $\mathrm{Me}_{2} \mathrm{H}_{3} \mathrm{Si}^{-}$. We assume that the transition state for this thermoneutral reaction is the square pyramidal structure and we find that the barrier for the conversion is 12 kJ mol^{-1} at the $6-21 \mathrm{G}$ level. MNDO Calculations for similar exchanges of a variety of substituents indicate a barrier range ${ }^{16}$ of $10-40 \mathrm{~kJ} \mathrm{~mol}^{-1}$. From a theoretical viewpoint it may therefore be predicted that we will encounter equilibration of substituents in gas-phase reactions of five-co-ordinate silicon anions. It would however be difficult to devise an experiment to prove this prediction unequivocally.
(B) The Reaction of Hydroxide Negative Ions with Tetra-methylsilane.-The prototypical 1,2-elimination reaction of an alkylsilane is the reaction between HO^{-}and tetramethylsilane [equation (1)]. The tetramethylsilane system is large for $a b$ initio calculations, thus we have used MeSiH_{3} as a model. We calculate the formation energy (at 6-21G) of intermediate $\left[\mathrm{Me}(\mathrm{HO}) \mathrm{H}_{3} \mathrm{Si}^{-}\right]$to be $-191 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$ (with respect to reactants considered as $0 \mathrm{~kJ} \mathrm{~mol}^{-1}$) and that the barrier for elimination of methane from this intermediate is $139 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The difference in energy between reactants and transition state is thus too large for entropic effects ${ }^{17}$ to retard the reaction. The measured rate (F.A.) of $1.9 \times 10^{-9} \mathrm{~cm}^{3}$ molecule ${ }^{-1} \mathrm{~s}^{-1}$ for reaction (1) is equal to the calculated ADO ${ }^{18}$ rate: thus the reaction occurs at every collision.
\[

$$
\begin{equation*}
\mathrm{HO}^{-}+\mathrm{Me}_{4} \mathrm{Si} \longrightarrow \mathrm{Me}_{3} \mathrm{SiO}^{-}+\mathrm{CH}_{4} \tag{1}
\end{equation*}
$$

\]

$\mathrm{HO}^{-}+\mathrm{Me}_{3}\left(\mathrm{CD}_{3}\right) \mathrm{Si} \longrightarrow$

$\mathrm{HO}^{-}+\mathrm{Me}_{2}\left(\mathrm{CD}_{3}\right)_{2} \mathrm{Si} \longrightarrow$

We have studied, in the flowing afterglow, the reactions of HO^{-}with both $\mathrm{Me}_{3}\left(\mathrm{CD}_{3}\right) \mathrm{Si}$ and $\mathrm{Me}_{2}\left(\mathrm{CD}_{3}\right)_{2} \mathrm{Si}$ to determine whether there is an isotope effect operating for the eliminations of variously labelled methanes. The reactions involved are (2)(5). The relative counts (relative abundances) of product ions in the two reaction sequences are (2):(3) $=1: 3$, and (4):(5) $=$ $1: 1$, an exactly statistical elimination. Two models may be used

(4)

(5)
to rationalize this behaviour, viz. (i) in the case of $\mathrm{Me}_{2}\left(\mathrm{CD}_{3}\right)_{2} \mathrm{Si}$, if HO^{-}occupies an apical position, the two intermediates (4) and (5) should be formed equally, and in the absence of an isotope effect CH_{4} and $\mathrm{CD}_{3} \mathrm{H}$ should be lost in the ratio 1:1. If the HO^{-}occupies an equatorial position, a slightly more complex statistical analysis also indicates that CH_{4} and $\mathrm{CD}_{3} \mathrm{H}$ should be lost equally and (ii) equilibration of substituents [cf. section (A)] is occurring. We cannot differentiate experimentally between these possibilities. It is possible that both are correct.
(C) The Reaction of Methoxide Ion with Tetramethylsilane.It is instructive to compare the results of flowing afterglow and

Table 1.

	Energy (a.u.)	Distances (\AA)		Angles (${ }^{\circ}$)	
MeO^{-}	-114.19956				
MeSiH_{3}	-330.17577				
(6)	-444.45101	$\int \mathrm{Si}(1)-\mathrm{O}(2)$	1.666		
		$\mathrm{O}(2)-\mathrm{C}(3)$	1.456		
		$\mathrm{H}(4)-\mathrm{C}(5)$	2.867		
(7)	-444.37255	$\left\{\begin{array}{l}\mathrm{C}(5)-\mathrm{H}(6)\end{array}\right.$	3.619	$\mathrm{O}(2)-\mathrm{Si}(1)-\mathrm{C}(5)$	71.81
		$\mathrm{Si}(1)-\mathrm{H}(6)$	1.482	$\mathrm{C}(5)-\mathrm{Si}(1)-\mathrm{H}(6)$	45.50
		$\mathrm{Si}(1)-\mathrm{C}(5)$	4.50		
		Si(1)-H(7)	1.500		
		[$\mathrm{Si}(1)-\mathrm{O}(2)$	1.657	$\mathrm{Si}(1)-\mathrm{O}(2)-\mathrm{C}(3)$	128.09
		$\mathrm{O}(2)-\mathrm{C}(3)$	1.484	$\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{H}(4)$	111.1
(8)	-444.37788	$\left\{\begin{array}{l}\mathrm{C}(3)-\mathrm{H}(4)\end{array}\right.$	1.076	$\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{H}(7)$	114.3
		$\{\mathrm{C}(3)-\mathrm{H}(5)$	1.072	$\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{H}(8)$	114.0
		C(3)-C(6)	3.05	$\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{H}(5)$	107.6
		$\} \mathrm{H}(5)-\mathrm{C}(6)$	2.84		
		$\} \mathrm{Si}(1)-\mathrm{O}(2)$	1.645	$\mathrm{Si}(1)-\mathrm{O}(2)-\mathrm{C}(3)$	130.05
(9)	-444.36757	$\left\{\begin{array}{l}\mathrm{O}(2)-\mathrm{C}(3)\end{array}\right.$	1.617	$\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	178.85
		$\} \mathrm{C}(3)-\mathrm{C}(4)$	2.45		
		$\{\mathrm{O}(1)-\mathrm{C}(2)$	2.62		
(10)	-444.48182	$\{\mathrm{O}(1)-\mathrm{H}(3)$	2.83		
$\mathrm{C}_{2} \mathrm{H}_{6}$	-79.13802				
$\mathrm{H}_{3} \mathrm{SiO}^{-}$	-365.33661				
Me^{-}	- 39.41215				
MeOSiH_{3}	-404.94109				

Figure 2. Results of ab initio calculations on the intermediates in the elimination of $\mathrm{C}_{2} \mathrm{H}_{6}$ from $\mathrm{Me}(\mathrm{MeO}) \mathrm{SiH}_{3}{ }^{-}$. Large points are fully optimized geometries in the direction of the appropriate reaction co-ordinate. Small points are derived from force-relaxation runs (potentialsurface scans). For energies and geometries of species shown in Figure 2 , see Table 1 .
ion cyclotron resonance experiments for the $\mathrm{MeO}^{-}-\mathrm{Me}_{4} \mathrm{Si}$ system. I.c.r. shows the formation of a detectable adduct [$\mathrm{Me}_{4}(\mathrm{MeO}) \mathrm{Si}^{-}$] and the two reactions (6) and (7). Of the two elimination reactions (6) is the more pronounced. ${ }^{3}$ Deuteriumlabelling studies show that the groups eliminated are those shown in structure (1) and (2) respectively. ${ }^{3}$ F.A. shows the formation of adduct [$\mathrm{Me}_{4}(\mathrm{MeO}) \mathrm{Si}^{-}$] and the elimination reaction (6). Reaction (7) is not observed. F.A. experiments are carried out in a helium buffer gas (at ca. 0.4 Torr) and so reactant ions will be of thermal energies. Reaction (7), observed in the i.c.r. experiment, is thus likely to come from excited MeO^{-}which in turn suggests that the energy barrier to this elimination is larger than the formation energy (excess of energy) of intermediate $\left[\mathrm{Me}_{4}(\mathrm{MeO}) \mathrm{Si}^{-}\right.$]. The rate of formation of the five-co-ordinate adduct is measured in the flowing afterglow as $1.4 \times 10^{-9} \mathrm{~cm}^{3}$ molecule ${ }^{-1} \mathrm{~s}^{-1}$ (calculated ADO ${ }^{18}$ rate: $1.5 \times 10^{-9} \mathrm{~cm}^{3}$ molecule ${ }^{-1} \mathrm{~s}^{-1}$); thus adduct formation occurs at every collision. In contrast, the experimental (F.A.) rate of reaction (6) is $1.0 \times 10^{-10} \mathrm{~cm}^{3}$ molecule ${ }^{-1} \mathrm{~s}^{-1}$, which means that on average $c a .7 \%$ of the initial five-co-ordinate intermediates have sufficient energy to eliminate ethane. Thus the energetic requirements for reactions (6) and (7) are quite different from that of reaction (1), described above.

$$
\begin{align*}
\mathrm{MeO}^{-}+\mathrm{Me}_{4} \mathrm{Si} & \longrightarrow \mathrm{Me}_{3} \mathrm{SiO}^{-}+\mathrm{C}_{2} \mathrm{H}_{6} \\
{\left[\mathrm{Me}_{4}(\mathrm{MeO}) \mathrm{Si}^{-}\right] } & \mathrm{Me}_{2}(\mathrm{MeO}) \mathrm{SiCH}_{2}{ }^{-}+\mathrm{CH}_{4} \tag{6}
\end{align*}
$$

We now describe $a b$ initio calculations (at the 6-21G level) of the model reaction systems: (i) the intermediate $\left[\mathrm{MeH}_{3}{ }^{-}\right.$ (MeO) Si^{-}] eliminating ethane and (ii) the intermediate [$\mathrm{Me}_{2} \mathrm{H}_{2}(\mathrm{MeO}) \mathrm{Si}^{-}$] eliminating methane. The reaction paths ascending towards barriers were searched as a series of fully relaxed geometries about a selected and fixed molecular coordinate, for example the length of a breaking bond. Descending paths were searched by total relaxation of geometry down to the next potential minimum.

The results for the elimination of ethane from $\left[\mathrm{MeH}_{3}-\right.$ (MeO) Si^{-}] are summarized in Figure 2.* Since five-co-ordinate adducts are formed with excess of energy, interchange of substituents on silicon will certainly occur [cf. Section (A), in particular Figure 1]. For computational convenience we have taken (6) (Figure 2) as the decomposing intermediate and placed the methoxy group in the preferred apical position. We have assumed that the first step in the decomposition of (6) is the breaking of the $\mathrm{Si}-\mathrm{C}$ bond and find that the departing Me^{-} needs to withdraw $3.5 \AA$ before the system relaxes to the intermediate (8), the precursor of ethane elimination. The reaction proceeds through the association complex (10) which in turn dissociates to $\mathrm{H}_{3} \mathrm{SiO}^{-}$and ethane. Although the overall reaction is exothermic $\left[-261 \mathrm{~kJ} \mathrm{~mol}^{-1}(6-21 \mathrm{G})\right]$, the barrier is high and marginally endothermic. The calculation thus indicates that if this reaction does occur, then it will certainly be slow. \dagger Reaction (6) is slow: its mechanism should be very similar to that shown in Figure 2.
The results obtained for the loss of methane from [$\mathrm{Me}_{2^{-}}$ $\left.\mathrm{H}_{2}(\mathrm{MeO}) \mathrm{Si}^{-}\right]$are summarized in Figure 3. The approach of MeO^{-}to yield the five-co-ordinate adduct (11) and subsequent departure of Me^{-}must follow paths very similar to those described above for the $\mathrm{MeO}^{-}-\mathrm{MeSiH}_{3}$ system (Figure 2), and these have not been calculated in detail. It is interesting that at $6-21 \mathrm{G}$, (12) relaxes without interception of barriers to associated products (14). This is a different result to that obtained for the analogous region of Figure 2. Unfortunately, this system is too large for us to undertake calculations at the $6-31^{++} \mathrm{G}$ level. We have thus carried out supplementary calculations relevant to the appropriate region of Figure 3 at the $6-31^{++} \mathrm{G}$ level for the model system $\mathrm{Me}^{-}-\mathrm{MeSiH}_{3}$, where Me^{-} interacts with the methyl group of methylsilane. From these studies we infer the system relaxes to a weak solvated methyl ion complex [detected at 6-21G as (13), Figure 3] and that this complex is transformed to (14) by passing over a barrier whose crest lies some $20 \mathrm{~kJ} \mathrm{~mol}^{-1}$ above that of the reactants. This pathway is not detected at the 6-21G level. In any event, we believe that the solvated methyl anion [in the vicinity of (12) to (13), Figure 3] should be considered as an orbiting complex, with the methyl anion orbiting the silicon moiety and keeping in random contact with methoxy and methyl substituents. The orbiting complex is an effective entropy bottleneck in the reaction since (i) it has many degrees of internal freedom and (ii) dissociation to Me^{-}and the methoxysilane is endothermic ($+45 \mathrm{~kJ} \mathrm{~mol}^{-1}$; Figure 3). Overall, the loss of methane depicted in Figure 3 should be a slow reaction, because of the considerable internal barrier. \ddagger
Finally, we have studied, using ion cyclotron resonance, the deuterium isotope effects observed for reactions (6) and (7). In the prototypical elimination (1) no deuterium isotope effect is observed because the decomposing intermediate $\left[\mathrm{Me}_{4}(\mathrm{HO})\right.$ -Si^{-}] has considerably more energy than is required to surmount the barrier and form the products $\mathrm{Me}_{3} \mathrm{SiO}^{-}$and CH_{4}. In contrast, the energy barriers for reactions (6) and (7) are large and deuterium isotope effects would be expected. The ratios of the observed losses of labelled and unlabelled ethanes

[^2]Table 2. Losses of (labelled) ethane and methane from the reactions of MeO^{-}and $\mathrm{CD}_{3} \mathrm{O}^{-}$with $\mathrm{Me}_{2}\left(\mathrm{CD}_{3}\right)_{2} \mathrm{Si}$ (i.c.r.)
System
$\mathrm{MeO}^{-}-\mathrm{Me}_{2}\left(\mathrm{CD}_{3}\right)_{2} \mathrm{Si}$
$\mathrm{CD}_{3} \mathrm{O}^{-}-\mathrm{Me}_{2}\left(\mathrm{CD}_{3}\right)_{2} \mathrm{Si}$

$\mathrm{MeO}^{-}-\mathrm{Me}_{2}\left(\mathrm{CD}_{3}\right)_{2} \mathrm{Si}$
$\mathrm{CD}_{3} \mathrm{O}^{-}-\mathrm{Me}_{2}\left(\mathrm{CD}_{3}\right)_{2} \mathrm{Si}$

Loss and ratio			
$\mathrm{CH}_{4}: \mathrm{CH}_{3} \mathrm{D}: \mathrm{CD}_{3} \mathrm{H}: \mathrm{CD}_{4}$			
40	20	40	a
35	25	40	a

$\mathrm{CD}_{3} \mathrm{O}^{-}-\mathrm{Me}_{2}\left(\mathrm{CD}_{3}\right)_{2} \mathrm{Si}$

$$
\begin{array}{r}
\mathrm{MeMe}: \mathrm{MeCD}_{3}=60: 40 \\
\mathrm{MeCD}_{3}: \mathrm{CD}_{3} \mathrm{CD}_{3}=52: 48
\end{array}
$$

${ }^{a}$ The loss of CD_{4} is not observed, but an elimination comprising $c a .5 \%$ would certainly be lost in baseline noise [the loss of CH_{4} in the reaction between MeO^{-}and $\mathrm{Me}_{4} \mathrm{Si}$ is quite small, the product ion is only 8% of the main peak $\left(\mathrm{MeO}^{-}, 100 \%\right.$)]. ${ }^{3}$
and methanes in the i.c.r. reactions of MeO^{-}and $\mathrm{CD}_{3} \mathrm{O}^{-}$with $\mathrm{Me}_{2}\left(\mathrm{CD}_{3}\right)_{2} \mathrm{Si}$ are listed in Table 2.

The small isotope effect observed for the various eliminations of ethane reflects the presence of a secondary isotope effect in the first step of the elimination [cf. (6) $\longrightarrow(8)$, Figure 2]. It is likely that the second step of this reaction $[c f .(8) \longrightarrow(10)]$ is also kinetically significant, ${ }^{8,9}$ but we cannot of course measure an isotope effect for this step. No isotope effect should be apparent for the final step $\left[c f .(10) \longrightarrow \mathrm{H}_{3} \mathrm{SiO}^{-}\right.$(Figure 2)] since the last formed intermediate is highly energetic.

The various losses of methane provide a more interesting scenario. We do not have $a b$ initio results for the system $\mathrm{MeO}^{-}-\mathrm{Me}_{4} \mathrm{Si}$ and we are using Figure 3 as a model. The reaction (11) to (14) is certainly not synchronous since an $\mathrm{Si}-\mathrm{C}$ bond is broken for (11) to (12), whereas from (12) to (14) one $\mathrm{C}-\mathrm{H}$ bond is breaking while a second is forming. Let us therefore calculate isotope effects from the ratios given in Table 2, assuming (i) that the isotope effects associated with the cleavage of the $\mathrm{Si}-\mathrm{C}$ bond and the formation of the $\mathrm{C} \cdots \mathrm{H}-\mathrm{C}$ unit can be calculated separately and (ii) that equilibration of Me and CD_{3} substituents occurs in initial intermediates [$\mathrm{Me}_{2}\left(\mathrm{CD}_{3}\right)_{2}(\mathrm{RO}) \mathrm{Si}^{-}$] ($\mathrm{R}=\mathrm{Me}$ or CD_{3}; see Table 2). A secondary isotope effect of 1.25 for $\mathrm{Si}-\mathrm{C}$ bond cleavage and a primary isotope effect of 3.0 for formation of $\mathrm{C} \cdots \mathrm{H}-\mathrm{C}$ gives a loss ratio $\mathrm{CH}_{4}: \mathrm{CH}_{3} \mathrm{D}: \mathrm{CD}_{3} \mathrm{H}: \mathrm{CH}_{4}$ of $32: 25: 37: 7$. Such values are not inconsistent with the proposed mechanism.

Conclusions

In this study we have attempted to answer the questions posed in the introduction. In summary (i) there is theoretical evidence to suggest that equilibration of apical and equatorial sub-
\dagger The reaction we are using as model for the process $\mathrm{MeO}^{-}+$ $\mathrm{Me}_{4} \mathrm{Si} \longrightarrow \mathrm{Me}_{3} \mathrm{SiO}^{-}+\mathrm{C}_{2} \mathrm{H}_{6}$ does occur as a minor process in the $\mathrm{MeO}^{-}-\mathrm{MeSiH}_{3}$ system. An F.A. study of the $\mathrm{CD}_{3} \mathrm{O}^{-}-\mathrm{MeSiH}_{3}$ system shows the following processes (branching ratios in parentheses):

$$
\begin{gathered}
\mathrm{CD}_{3} \mathrm{O}^{-}+\mathrm{MeSiH}_{3} \longrightarrow \mathrm{Me}\left(\mathrm{CD}_{3} \mathrm{O}\right) \mathrm{H}_{3} \mathrm{Si}^{-}(0.41) \\
\mathrm{CD}_{3} \mathrm{O}^{-}+\mathrm{MeSiH}_{3} \longrightarrow \mathrm{MeH}_{2} \mathrm{MiO}^{-}+\mathrm{CD}_{3} \mathrm{H}(0.57) \\
\mathrm{CD}_{3} \mathrm{O}^{-}+\mathrm{MeSiH}_{3} \longrightarrow \mathrm{H}_{3} \mathrm{SiO}^{-}+\mathrm{MeCD}_{3}(0.02)
\end{gathered}
$$

\ddagger As noted above, the process $\mathrm{MeO}^{-}+\mathrm{Me}_{4} \mathrm{Si} \longrightarrow \mathrm{Me}_{2}(\mathrm{MeO}) \mathrm{Si}-$ $\mathrm{CH}_{2}{ }^{-}+\mathrm{CH}_{4}$ is not observed in the F.A. In contrast, the model reaction described in Figure 3 is observed but in small yield. An F.A. study of the $\mathrm{CD}_{3} \mathrm{O}^{-}-\mathrm{Me}_{2} \mathrm{SiH}_{2}$ system shows the following processes (branching ratios in parentheses):

$$
\begin{gathered}
\mathrm{CD}_{3} \mathrm{O}^{-}+\mathrm{Me}_{2} \mathrm{SiH}_{2} \longrightarrow \mathrm{Me}_{2}\left(\mathrm{CD}_{3} \mathrm{O}\right) \mathrm{H}_{2} \mathrm{Si}^{-}(0.48) \\
\mathrm{CD}_{3} \mathrm{O}^{-}+\mathrm{Me}_{2} \mathrm{SiH}_{2} \longrightarrow \mathrm{Me}_{2} \mathrm{HSiO}^{-}+\mathrm{CD}_{3} \mathrm{H}(0.42) \\
\mathrm{CD}_{3} \mathrm{O}^{-}+\mathrm{Me}_{2} \mathrm{SiH}_{2} \longrightarrow\left(\mathrm{CD}_{3} \mathrm{O} \mathrm{H}_{2} \mathrm{SiCH}_{2}^{-}+\mathrm{CH}_{4}(0.05)\right. \\
\mathrm{CD}_{3} \mathrm{O}^{-}+\mathrm{Me}_{2} \mathrm{SiH}_{2} \longrightarrow \mathrm{MeH}_{2} \mathrm{SiO}^{-}+\mathrm{MeCD}_{3}(0.04)
\end{gathered}
$$

Table 3.

	Energy (a.u.)	Distances (\AA)		Angles (${ }^{\circ}$)	
$\begin{aligned} & \mathrm{MeO}^{-} \\ & \mathrm{Me}_{2} \mathrm{SiH}_{2} \\ & (\mathbf{1 1}) \end{aligned}$	$\begin{aligned} & -114.19956 \\ & -369.18524 \\ & -483.45605 \end{aligned}$				
		$\int \mathrm{Si}(1)-\mathrm{H}(2)$	1.52		
		$\mathrm{Si}(1)-\mathrm{O}(3)$	1.72		
		$\mathrm{O}(3)-\mathrm{C}(4)$	1.472	$\mathrm{C}(7)-\mathrm{Si}(1)-\mathrm{C}(5)$	48.3
		$\mathrm{C}(5)-\mathrm{H}(6)$	1.462	$\mathrm{H}(6)-\mathrm{C}(7)-\mathrm{H}(10)$	126.2
(12)	-483.38116	$\mathrm{H}(6)-\mathrm{C}(7)$	1.436	$\mathrm{O}(3)-\mathrm{Si}(1)-\mathrm{C}(7)$	68.3
		$\mathrm{C}(7)-\mathrm{H}(8)$	1.101	$\mathbf{S i}(1)-\mathbf{C}(7)-\mathbf{H}(8)$	55.1
		C(7)-H(9)	1.093		
		$\mathrm{C}(7)-\mathrm{H}(10)$	1.093		
		$\mathrm{Si}(1)-\mathrm{C}(7)$	3.50		
		¢ $\mathrm{Si}(1)-\mathrm{H}(2)$	1.51		
		$\mathrm{Si}(1)-\mathrm{O}(3)$	1.70		
		$\mathrm{O}(3)-\mathrm{C}(4)$	1.42	$\mathrm{O}(3)-\mathrm{Si}(1)-\mathrm{C}(5)$	115.7
(13)	-483.38542	$\mathrm{C}(5)-\mathrm{H}(6)$	1.10	$\mathrm{Si}(1)-\mathrm{C}(7)-\mathrm{H}(8)$	105.8
		H(6)-C(7)	2.61	$\mathrm{Si}(1)-\mathrm{O}(3)-\mathrm{C}(4)$	126.5
		$\mathrm{C}(7)-\mathrm{H}(8)$	1.11		
		$\mathrm{C}(7)-\mathrm{H}(9)$	1.11		
		. $\mathrm{Si}(1)-\mathrm{C}(7)$	4.50		
		$\int \mathrm{Si}(1)-\mathrm{H}(2)$	1.529		
		$\mathrm{Si}(1)-\mathrm{O}(3)$	1.743		
		$\mathrm{O}(3)-\mathrm{C}(4)$	1.415		
(14)	-483.44432	$\mathrm{Si}(1)-\mathrm{C}(5)$	1.771	$\mathrm{Si}(1)-\mathrm{C}(5)-\mathrm{H}(6)$	122.0
		$\mathrm{C}(5)-\mathrm{H}(6)$	1.079	$\mathrm{C}(5)-\mathrm{H}(6)-\mathrm{H}(7)$	199.3
		$\mathrm{C}(5)-\mathrm{H}(7)$	2.897		
		H(7)-C(8)	1.084		
		C(8)-H(9)	1.085		
CH_{4}	-40.14926				
$\mathrm{H}_{2}(\mathrm{MeO}) \mathrm{SiCH}_{2}{ }^{-}$	-443.29008				
Me^{-}	- 39.41215				
$\mathbf{M e}(\mathbf{M e O}) \mathrm{SiH}_{2}$	-443.95560				

Figure 3. Results of $a b$ initio calculations on the intermediates in the elimination of CH_{4} from $\mathrm{Me}_{2}(\mathrm{MeO}) \mathrm{SiH}_{2}{ }^{-}$. Large points are fully optimized geometries in the direction of the appropriate reaction coordinate. Small points are derived from force-relaxation runs (potentialsurface scans). For energies and geometries of species shown in Figure 3, see Table 3. * In this region there is a rapid shortening of the $\mathrm{H}-\mathrm{C}$ bond.
stituents may occur in energized trigonal bipyramidal silicon negative ions in the gas phase and (ii) ab initio calculations of model systems indicate that the 1,2-elimination reactions which occur in the $\mathrm{MeO}^{-}-\mathrm{Me}_{4} \mathrm{Si}$ system are stepwise with large internal barriers. Deuterium isotope effects are observed for these reactions.

Experimental

I.c.r. spectra were measured with a Dynaspec ICR 9 spectrometer equipped with a three-section cell, operating at 70 eV (primary negative ions formed by dissociative secondary electron capture), and using an ion transit time of $1 \times 10^{-3} \mathrm{~s}$. Other reaction conditions, $\omega_{\mathrm{c}} / 2 \pi 153.7 \mathrm{kHz}$, RONO pressure 5×10^{-6} Torr, pressure of substrate 1×10^{-5} Torr. The total ion current was in the $10^{-10} \mathrm{~A}$ range, emission current $0.2 \mu \mathrm{~A}$. Ratios of product ions given in Table 2 are an average of ten separate measurements.

Alkoxide negative ions were formed in the i.c.r. cell with either MeONO or $\mathrm{CD}_{3} \mathrm{ONO}$ prepared ${ }^{19}$ on the day of the experiment. Tetramethylsilane was a commercial sample. $\mathrm{Me}_{3^{-}}$ $\left(\mathrm{CD}_{3}\right) \mathrm{Si}$ and $\mathrm{Me}_{2}\left(\mathrm{CD}_{3}\right)_{2} \mathrm{Si}$ were prepared by reported procedures ${ }^{20}$ (${ }^{2} \mathrm{H}_{3}=99 \%$ and ${ }^{2} \mathrm{H}_{6}=99 \%$ respectively).

Flowing afterglow experiments were carried out at 300 K in a system described previously. ${ }^{11}$ In summary, the system consists of a $100 \mathrm{~cm} \times 7 \mathrm{~cm}$ i.d. flow reactor affixed to a quadrupole mass spectrometer. A fast flow ($80 \mathrm{~m} \mathrm{~s}^{-1}$) and relatively high pressure (0.4 Torr) of helium buffer gas is maintained in the flow tube by a Roots blower. The HO^{-}ion was generated from $\mathrm{N}_{2} \mathrm{O}(1 \mu)$ and $\mathrm{CH}_{4}(2 \mu)$. The MeO^{-}ion was generated from $\mathrm{MeOCH} \mathrm{CH}_{2} \mathrm{OMe}$ by reaction with $\mathrm{NH}_{2}{ }^{-}$(produced by electron bombardment of ammonia). ${ }^{21} \mathrm{CD}_{3} \mathrm{O}^{-}$was similarly generated from $\mathrm{CD}_{3} \mathrm{OCD}_{2} \mathrm{CD}_{2} \mathrm{OCD}_{3}$. The neutral species
to be treated with either HO^{-}or MeO^{-}is introduced into the system through the moveable inlet placed at least 10 cm downstream of the area of HO^{-}(or MeO^{-}) generation. Flow rates were determined by monitoring the pressure of substrate increase with time in a calibrated volume. Rate coefficients were measured by following reactant ion counts as a function of time. Measurements were made at several neutral flow rates, and reported values are an average of these measurements. The experimental precision of each rate constant is better than $\pm 10 \%$: the overall accuracy is estimated to be $\pm 25 \%$. Branching ratios were measured as described previously. ${ }^{22}$ ADO rates were calculated by the method of Su and Bowers ${ }^{18}$ and can be considered to be correct to $\pm 20 \%$.

All neutral reagents used in the F.A. experiments were obtained from commercial sources. Gases were of the following purities: $\mathrm{He}(99.997 \%), \mathrm{NH}_{3}(99.999 \%), \mathrm{N}_{2} \mathrm{O}(99.99 \%)$, and $\mathrm{CH}_{4}(99.99 \%)$.

Acknowledgements

The i.c.r. section of this work was carried out with the aid of a grant from the Australian Research Grants Scheme. One of us (R. N. H.) acknowledges the award of an A.R.G.S. postdoctoral fellowship. We thank the University of Adelaide Computing Centre for facilities. The F.A. experiments were carried out while one of us (J. H. B.) was on leave at the University of Colorado at Boulder. C. H. DePuy acknowledges the support of the U.S. Army Research Office (Contract No. DAAG-29-85-K-0046).

References

1 C. H. DePuy, V. M. Bierbaum, L. A. Flippin, J. J. Grabowski, G. K. Schmitt, and S. A. Sullivan, J. Am. Chem. Soc., 1980, 102, 5012.
2 C. H. DePuy, V. M. Bierbaum, and R. Damrauer, J. Am. Chem. Soc., 1984, 106, 4051.
3 G. Klass, V. C. Trenerry, J. C. Sheldon, and J. H. Bowie, Aust. J. Chem., 1981, 34, 519.
4 R. Corriu, 'Mechanisms of Nucleophilic Substitutions at Silicon' in Journal of Organometallic Chemistry Library 9, Organometallic Chemistry Reviews, ed. D. Seyferth, Elsevier, Amsterdam, 1980, pp. 357-73, and references cited therein.

5 H. Kwart and K. King, ' d-Orbitals in the Chemistry of Silicon, Phosphorus, and Sulphur,' Springer Verlag, Berlin, 1977, pp. 98-99. 6 R. S. Berry, J. Chem. Phys., 1960, 32, 933.
7 P. Gillespie, P. Hoffman, H. Klusacek, D. Marquarding, S. Pfohl, F. Ramierez, E. A. Tsolis, and I. Ugi, Angew. Chem., Int. Ed. Engl., 1971, 10, 687; R. B. Wetzel and G. L. Kenyon, J. Am. Chem. Soc., 1974, 96, 5199.

8 W. Tumas, R. F. Foster, M. J. Pellerite, and J. I. Brauman, J. Am. Chem. Soc., 1983, 105, 7464; W. Tumas, R. F. Foster, and J. I. Brauman, ibid., 1983, 105, 7464.
9 R. N. Hayes, J. C. Sheldon, J. H. Bowie, and D. E. Lewis, J. Chem. Soc., Chem. Commun., 1984, 1431; Aust. J. Chem., 1985, 38, 1197.
10 R. N. Hayes, J. C. Sheldon, and J. H. Bowie, Organometallics, 1986, 5, 102.

11 V. M. Bierbaum, C. H. DePuy, R. H. S̄hapiro, and J. H. Stewart, J. Am. Chem. Soc., 1976, 98, 4229.
12 J. S. Binkley, M. J. Frisch, D. J. DeFrees, K. Raghavachari, R. A. Whitesides, H. B. Schlegel, E. M. Fluder, and J. A. Pople, GAUSSIAN 82, Carnegie Mellon University.
13 L. Radom, Mod. Theor. Chem., 1977, 4, 333; J. Chandraseker, J. G. Andrade, and P. von R. Schleyer, J. Am. Chem. Soc., 1981, 103, 5609.
14 J. C. Sheldon, G. J. Currie, J. Lahnstein, R. N. Hayes, and J. H. Bowie, Nouv. J. Chim., 1985, 9, 205.
15 J. C. Sheldon, R. N. Hayes, and J. H. Bowie, J. Am. Chem. Soc., 1984, 106, 7711.
16 L. P. Davis and L. W. Burggraf, personal communication.
17 J. I. Brauman, W. N. Olmstead, and C. A. Lieder, J. Am. Chem. Soc., 1974, 96, 4030; W. N. Olmstead and J. I. Brauman, ibid., 1977, 99, 4219; M. J. Pellerite and J. I. Brauman, ibid., 1980, 102, 5993; 1983, 105, 2672; O. I. Asubiojo and J. I. Brauman, ibid., 1979, 101, 3715.
18 T. Su and M. T. Bowers, Int. J. Mass Spectrom. Ion Phys., 1973, 12, 347.

19 W. A. Noyes, Org. Synth., 1936, 16, 108.
20 C. Eaborn, in 'Organosilicon Compounds,' Butterworths, London, 1960, p. 10.
21 V. M. Bierbaum, J. J. Grabowski, and C. H. DePuy, J. Phys. Chem., 1984, 88, 1389.
22 D. R. Anderson, V. M. Bierbaum, and C. H. DePuy, J. Am. Chem. Soc., 1983, 105, 4244.

[^0]: \dagger The term 1,2-elimination means that the groups being eliminated come from adjacent atoms. The term is not intended to imply a particular mechanism.

[^1]: * A referee has asked whether transition states represent saddle points on the potential-energy surfaces. We have discussed this matter in detail previously ${ }^{14}$ and repeat it here. Plausible structures for transition states were identified as those of highest energy in a series of fully optimized supermolecules with fixed trial values of the significant reaction coordinate. We recognise that the choice of a single molecular co-ordinate as the reaction co-ordinate in a particular segment of reaction is essentially intuitive or conventional, and in principle an oversimplification. However, in our simple systems we believe the choice is reasonably obvious and realistic. We have not confirmed that our proposed transition-state geometries are true stationary states by full optimization to a single negative eigenvalue of the Hessian matrix, and instead regard these structures as merely plausible and as useful starting points for refinement should that be useful. A proposed transition state was always checked to see that it correctly led back to reactants and forward to relevant products by full relaxation after a small and appropriate distortion. All points in Figures $1-3$ refer either to fully optimized reactant, product, or intermediate molecules, or to unstable species fully optimized at the indicated value of the stated molecular co-ordinate.

[^2]: * Supplementary calculations (at the $6-31^{++} G$ level) on the approach of small negative ions $\left(\mathrm{H}^{-}, \mathrm{F}^{-}\right.$and $\left.\mathrm{HO}^{-}\right)$from a variety of directions towards a methyl group of MeSiH_{3}, establish that there are no significant association complexes of the type $\mathrm{X}^{-} \cdots \mathrm{H}_{3} \mathrm{CSiH}_{3}$. The minimum-energy path of $\mathrm{CH}_{3} \mathrm{O}^{-}$approaching a methyl group is one that skirts around the van der Waals envelope of the methyl group (at an $\mathrm{O}^{-} \cdots \mathrm{C}$ radius of $c a .3 .0 \AA$) to enter the steepening channel to the silicon centre and to form a five-co-ordinate adduct. Deprotonation complexes of the type $\mathrm{XH} \cdots-\mathrm{CH}_{2} \mathrm{SiH}_{3}$ do exist but they are reached by a departure from the main channel after surmounting a barrier of some $30 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

